
111OO11

+111-4

Control the computer

of the lunar module'

1110011 © 2016-2018, Pablo Garaizar Sagarminaga

CC BY-SA-NC

www.compus.es

In 1969, millions of people in the Earth were following by TV the events that happened

384,000 km away. Three minutes before landing on the Moon, the on-board computer of

the Eagle lunar module triggered several alarms. Due to a flaw in the manuals, a radar not

needed for landing was switched on when it should be switched off. This radar

overloaded the on-board computer, which was taking care of all the operations involved

in landing. Luckily, the software that managed the on-board computer was designed by a

team of engineers leaded by Margaret Hamilton, and it was intelligent enough to detect

the problem. The computer alerted the astronauts, saying, "I am overloaded with more

tasks than I should be doing right now, so I'm going to focus only on the important tasks,

those that have to do with with landing." Remember it was a computer with less

computing power than a digital clock. Without this novel and intelligent design, the "small

step for man and great leap for Humanity" would have ended in total crash.

It took more than 30 years before NASA recognized Margaret Hamilton's merit. Hamilton

was the director of MIT's software engineering center in charge of develop the onboard

software for the entire Apollo program, the only one that has been able to to let us step

on other worlds and come back safely.

MOON is an educational game for 1 to 4 people (estimated minimum age to play: 11 years and

older).

Playing MOON you will learn how to count in binary, perform logical operations and find out

how a computer works while you're having fun.

In MOON, each player will simulate being a computer program and try to get the desired

result (a combination of bits) before the others.

1110011

SET UP

1. Place the 4 CPU registers and their corresponding bits switched off in the middle of the

table. If this is your first game, we recommended you to start with 4 bits per register.

2. Place the operation cards on the left of the central board, sorted according to their

cost of power: first those that cost 2 power units (INC, DEC), then those the ones that cost 1

power unit (NOT, ROL, ROL, ROL, MOV), finally those that cost 1/2 power units (OR, AND, XOR).

3. Shuffle the goal cards and place the deck on the right side of the registers.

4. Give each player a RAM card and place as many bits as necessary near to them.

1

operation cards

RAM module

registers A, B, C y D

of the CPU

goal cards

power units

Both the individual RAM modules and the CPU registers have several bits that work as binary

counters. Each bit has an associated number (from 1 to 8 in 4-bit registers). If all the bits of a

register are switched off, the value zero is stored.

This operation is used on a single register and costs 1 power unit. It inverts every bit on the

register, that is, it converts the zeros (bits switched off) into ones (bits switched on) and vice

versa. This involves flipping all the bit cards of a register.

2

MOON simulates a real computer. Operations modify data in the same way it happens in

real microprocessors. Therefore, we think it is a good idea to remember some computer

related concepts before you start playing.

COUNTING IN BINARY

If there are bits switched on, you have to add the numbers

placed on the top of the CPU to know what number is stored.

 For example, this combination represents the number 3 because

 the bits of positions 1 and 2 are active, so 1 + 2 = 3.

This represents the number 9 because the bits of the

positions 1 and 8 are activated, so 1 + 8 = 9.

OPERATIONS

To change the bits of the CPU registers we use operations:

NOT

3

This operation is used on a single register and costs 2 power units. It adds 1 to the total

value stored in the register:

INC

. If the register stores the maximum value (all bits switched on), the register is reseted to 0:

DEC

This operation is used on a single register and costs 2 power units. It subtracts 1 to the

total value stored in the register.

If register stores the zero value, subtracting 1 will set all the bits of the register to one.

4

This operation is used on a single register and costs 1 power unit. It involves rotating

every bit on the register to the left and placing the remaining bit on the left in the

rightmost position:

ROL

Trick! In many cases, it is equivalent to multiplying the value of the register by 2:

ROR

This operation is used on a single register and costs 1 power unit. It involves rotating

every bit on the register to the right and placing the remaining bit on the right in the

leftmost position:

Trick! In many cases, it is equivalent to dividing the value of the register by 2:

5

This operation is used on 2 registers or a register and a RAM module and costs 1 power

unit (1/2 in competitive mode).

MOV

OR

This operation is used on 2 registers and costs 1/2 power unit.

This operation copies all bits from one register to another, overwriting the value stored

in the destination (it is very useful to copy a value in your RAM and recover it later to

prevent other players modifying it).

It involves comparing each bit of one register with the corresponding bit of the other

(the 1st bit with the 1st bit, the 2nd with the 2nd, etc.). If any of the bits is switched on,

the resulting bit is switched on (otherwise, the resulting bit is switched off).

The final result of all these comparisons is stored in the first register (the second is not

modified):

6

This operation is used on 2 registers and costs 1/2 power unit.

AND

This operation is used on 2 registers and costs 1/2 power unit.

This operation involves comparing each bit of one register with the corresponding bit of

the other (the 1st bit with the 1st bit, the 2nd with the 2nd, etc.). If both bits are switched

on, the resulting bit is switched on (otherwise, the resulting bit is switched off).

This operation involves comparing each bit of one register with the corresponding bit of

the other. If both bits are different (one is switched on and the other is switched off), the

resulting bit is switched on (otherwise, the resulting bit is switched off).

The final result of all these comparisons is stored in the first register (the second is not

modified):

 ORX

The final result of all these comparisons is stored in the first register (the second is not

modified):

7

Trick! If you need to reset a register (all the bits switched off), you can use a XOR where

the source and destination register is that register (example: XOR of A with A) because all

bits are the same.

COMPUTERS ARCHITECTURE

Finally, let's review some important ideas about the internal architecture of a computer:

 ORX

In order to achieve their purposes, programs do

operations on the CPU. When a program runs, it can

use any register (A, B, C and D) to perform

operations, but the result has to be stored in the A

register.

In MOON, this means that any player can modify any

CPU register in her turn, but you will have to achieve

your goal in the A register to win.

The operating system assigns time to programs to run.

When they run out of time, they have to leave the CPU for

other programs.

In MOON, each player has several power units for every

turn. You will use them to perform operations and then

leave the CPU registers to the next player.

Since all programs share the CPU, a partial results

should be stored in the RAM memory. Contrary to

what happens with the CPU registers, the RAM

memory of each program is protected from other

programs.

In MOON, each player has an individual RAM module

where you can copy any of the values from the CPU

registers (using the MOV operation) before your turn

ends. Then you can copy it back to any register of the

CPU (using MOV again) during your next turn.

COOPERATIVE MODE

Both the CPU registers and the individual RAM modules can be used with 4, 5 or 6 bits.

For the first games, we suggest using 4 bits.

 ORX

Set up the game as explained on page 1 of this

manual.

At the beginning of the game, draw a card from the

deck of goal cards and place it in front of the deck by

the side where you can see the combination of bits:

To win, you must solve all the goal cards in the deck.

Goal cards have combinations of bits that you have to store in register A of the CPU.

In each turn, each player can perform as many operations as they wish depending on the

power units available (remember that there are operations such as OR that require 1/2

power units, while others like INC require 2 power units). It's not mandatory to spend all

power units in one turn and it is not possible to share the power units which other players.

Operation cards perform operations on the A, B, C and D registers of the CPU. Any

player can modify the values stored in all the 4 CPU registers, but they cannot

copy or modify the values stored in the the RAM modules of other players.

At the end of the round, you have to advance the goal cards up one position,

draw a new goal card from the deck and place it in front of the deck:

If a goal card advances to 5th position, at the end of the round, the

game is over and your mission failed.

This can happen even if there are no target cards left in the deck but it

takes you more than five rounds to solve the last goal cards.

On the other hand, if you manage to solve all the goals of the deck

promptly, you win.

8

X X

9

Moreover, there are goal cards they have that don't have

a combination of bits but a bug.

These special cards cannot be discarded and they will

block one of the positions of the list of pending goals for

the rest of the game.

You can addapt the difficulty of the game depending on the number of players and

your skills varying the number of power units per turn, the size of the deck of goal

cards and the number of goal cards that will initialize the registers.

In the novice level, draw the first 3 goal cards and place their values in registers B, C,

and D respectively. In the medium level, the same is done with the first 2 goal cards. In

the hacker level, the A register is initialized to the value 1 (off-off-off-on), and the rest

of the registers are reset to 0.

1 5 8 +

2 5 19 +

3 4 12 +

4 4 16 +

1 4 8 +

2 4 10 +

3 3 12 +

4 3 16 +

NOVICE LEVEL

4-BIT 6-BIT

1 3 8 +

2 3 10 +

3 2 12 +

4 2 16 +

1 1.5 8 +

2 1.5 10 +

3 1 12 +

4 1 16 +

HACKER LEVEL

4-BIT 6-BIT

1 4 8 +

2 4 10 +

3 3 12 +

4 3 16 +

1 3 8 +

2 3 10 +

3 2 12 +

4 2 16 +

MEDIUM LEVEL

4-BIT 6-BIT

10

In the case of the 6-bit version, the goal cards must be solved in pairs (the left card for

bits 32 and 16, and the card on the right for bits 8, 4, 2 and 1).

However, only one new goal card will be drawn at final for each round (this reduces the

pace of the pending goals queue increase compared with the 4-bit version):

YOU SOLVE

A GOAL

SHOW THE NEXT

GOAL

AT THE END

OF THE ROUND,

YOU DRAW ONLY

ONE NEW GOAL CARD

If the hacker level is a piece of cake for you, you can increase the difficulty adding the

event cards into the goal card deck. RESET cards reset (all bits switched off) registers:

ERROR register cards disable the register for the rest of the game, unless you fix it

using an OK card:

ERROR instruction cards disable the instruction for the rest of the game, unless you fix

it using an OK card.

11

COMPETITIVE MODE

Both the CPU registers and the individual RAM modules can be used with 4, 5 or 6 bits.

For the first games, we suggest using 4 bits.

 ORX

Set up the game as explained on page 1 of this

manual.

Each player chooses a RAM card and sets all bits of

the RAM module to zero (switched off).

Distribute the power units to each player according to the version (4-6 bits) and the level

(novice, medium, hacker) of each player:

Shuffle the deck of goal cards and place it to the right of the CPU.

In 4-bit games, each player draws a goal card, sees it and places it next to her RAM

module without showing the corresponding combination of bits.

In 6-bit games, each player draws two goal cards and place them one on each side of

her RAM module: the card on the left corresponds to bits 32 and 16 of register A, and the

card on the right, to bits 8, 4, 2 and 1.

APRENDIZ NORMAL HACKER

4-bit 4 3 2

6-bit 5 4 3

NOVICE MEDIUM HACKER

12

Goal cards have combinations of bits that you have to store in register A of the CPU.

In each turn, each player can perform as many operations as they wish depending on

the power units available (remember that there are operations such as OR that require

1/2 power units, while others like INC require 2 power units). It's not mandatory to spend

all power units in one turn and it is not possible to share the power units which other

players.

Operation cards perform operations on the A, B, C and D registers of the CPU. Any player

can modify the values stored in all the 4 CPU registers, but they cannot copy or modify

the values stored in the the RAM modules of other players.

Every time you manage to have the combination of bits of your goal card in the register

A of the CPU, you have to show your goal to the rest of players. Then, save it for the end

of the game and draw another goal card from the deck.

= =

In the case of drawing a bug card, you have to show it to the rest of the players and save

it for the moment when you want to hack other player (bug cards do not count as goal

cards at end of the game). In competitive mode, a bug card can be used to force other

player to show the goal card. After using it, the hacked player gets the bug card and

may use it at any time against any player.

When a player takes the last goal card from the deck, the game is over at the end of the

round. Then, the player that solved the highest number of goal cards wins the game.

13

 ORX

HACKERS

In each goal card there is an acronym that corresponds to extra operations that you can

perform once after achieving that goal.

XCHG works as a bidirectional MOV, it exchanges the values of two registers.

SHL and SHR works similarly to ROL and ROR respectively, but the bit that is left out

always becomes a zero (example: SHL of 1011 = 0110).

ADD and SUB allow you to arithmetically add and subtract two records (examples: 0101

ADD 1010 = 1111 and 1101 ADD 1000 = (1)0101, the first 1 is discarded if we use 4-bit registers).

NOR, NAND, XNOR are the combination of OR, AND or XOR and then a NOT (for example,

the result of a NOR operation will be 1 only if the two entries are 0).

MOON is a modular game that you can adapt to your needs. For example, very novice

players can avoid using logical operations (OR, AND, XOR) in their first games. On the

other hand, expert players can play with 8 bits, just putting two MOON games together.

In addition to this general recommendation, we end this handbook by explaining two

more extra features that can enhance your gaming experience.

Decide which hacker you want to be, with different special skills:

- Addition hacker (blue): you can use INC or DEC by consuming only one power unit.

- Copy hacker (purple): you can make a MOV operation without consuming power in

each case turn.

- Rotations hacker (yellow): you can use ROL or ROR consuming only 1/2 power unit.

- Logic hacker (red): you can do two logic operations OR, AND, XOR without consuming

power on each turn.

E TRASX

E TRA OPERATIONSX

111OO11

