
Stage Activity Performance level 0
Low performers

Performance level 1
Medium performers

Performance level 2
High performers

Performance level 3
Elite performers

Plan Approach Project approach with big 
specification up-front 
(“waterfall’”)

Iterative project approach (agile/
”Scrum” principles & 
techniques)

Iterative product approach, 
driven by product backlog

Flow of changes (Kanban-style)

Team Separate build and maintenance 
team

technology knowledge divided 
over different teams (change 
request driven)

all required knowledge in the 
team

generalizing specialists

Work visualization Nothing only planned work only own work all work is visualized

Code Quality Nothing Coding guidelines Manual reviews Automatic code scans

Versioning Nothing Just versioning Branching per release Trunk based development

Security Nothing secure coding guidelines External library scans code scans (SAST tool)

Build Approach Manual build Scheduled nightly scheduled every hour upon commit

Breakers compilation errors failing unit tests code quality scans Security scans

Test Approach Manual testing in UAT Automated functional tests (unit,
integration)

Automated non-functional tests 
(stress, load)

Chaos injection in production

Responsibility Business is responsible Business and IT all do their part 
of the tests (overlap)

Business and IT do their part of 
the tests (no overlap)

Shared responsibility: business 
decides what to test, IT decides 
how to test it

Security Nothing Penetration testing before going 
to production

Recurring penetration testing DAST tool continuously scans 
behavior or running application 
and reports vulnerabilities

Build-Run-Improve-Repeat|Stages and activities



Stage Activity Performance level 0
Low performers

Performance level 1
Medium performers

Performance level 2
High performers

Performance level 3
Elite performers

Release Approval Separate release management 
team guarding over the planned 
changes and their impact

Business go-no go meeting Product owner Team – 4 eyes principle

Activate upon deploy fixed date, via feature toggles on demand
Via feature toggles

On commit
Only with trunk based 
development

Deploy Frequency Quarterly Every month Every week Constant flow
Only with Kanban-style plan 
approach and trunk-based 
development

Code Manual deploy
Separate team

Automated build Automated deploy to test, 
manual approval for UAT, 
production

Automated deploy to production
Only with Kanban-style plan 
approach and trunk-based 
development

Infrastructure Know your colleague: call the 
infra guy to do the changes

Get infrastructure changes via 
service request

Changes to infrastructure are 
done via self service

Infrastructure as code, part of 
your source code repository

Operate Team Segregation of duties closer collaboration between dev
and ops team

shared responsibility between 
dev and ops team

you build it, you run it
E2E team responsibility

Availability Only 1 production instance Cold standby Hot standby Load balancing and failover

Capacity No capacity management in 
place

Fixed capacity, based on historic
usage and capacity metrics

Elastic (manually sized) 
capacity, based on historic usage
and capacity metrics

Automated capacity 
management based on usage 
metrics and feedback

Monitor Approach Nothing Information radiators followed 
up by a separate team

Automatic escallation to team 
members

Self-healing & self-learning 
system

Build-Run-Improve-Repeat|Stages and activities


